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B Extension: Heterogeneous Relations
Denote by λ1(M+) the largest eigenvalue of matrix M+ and denote by c+, d+ the cor-
responding right and left eigenvector, normalized such that ∑n

j=1 c
+
j = 1 = ∑n

j=1 d
+
j .2

Likewise, let λ1(M−) be the largest eigenvalue of matrix M− and denote by c−, d− the
corresponding normalized right and left eigenvector. Notice that these eigenvalues and
eigenvectors now contain information not only about network asymmetry, but also about
decay asymmetries, as the weights δ+

ij and δ−ij have already entered the matrices M+ and
M−. When these matrices are considered as weighted networks, c+ and c− are called eigen-
vector centrality or right-hand eigenvector centrality of M+ and M− (Bonacich, 1987),
while d+ and d− can be called left-hand eigenvector centrality (e.g. Golub and Sadler,
2016).

1We start with B since there is already an appendix A following the main text.
2The two eigenvectors c+ and d+ coincide in the special case that the matrix M+ is symmetric.
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B.1 Results of Extended Model
Consider first the special case of symmetry i.e. if δ+

ij = δ−ij and a+
ij = a−ij for all i, j. Then

the results of Section 4 stay essentially unchanged. The only difference is that every
appearance of (left and right) eigenvector centrality c in Proposition 1 has to be replaced
by d := d+ = d−, the left eigenvector centrality. The important point of symmetry thus
is symmetry with respect to positive and negative networks, but not symmetry of the
matrices A or M . In other words, it is not essential that the network is undirected or
that the discounting is symmetric in the sense that δij = δji; but that there is symmetry
between positive and negative networks.

Extended Proposition 1 (Symmetry). Under symmetry, the long-run signal mix is a
convex combination of the initial signals sj with weights according to left-hand eigenvector
centrality, i.e. for all i, lim

t→∞
xi(t) = ∑n

j=1 djsj. Therefore, the probability of misinforma-
tion pMis

i (∞) is bounded from above by 0.5. Moreover, if for some sequence of growing
networks, indexed by network size n, we have lim

n→∞
max
j=1,...,n

dj,n = 0, then the probability of
misinformation converges to zero, i.e. for all i, lim

n→∞
pMis
i,n (∞) = 0.

We now proceed with the most general case where signal processing is allowed to differ
between the two networks.

Extended Proposition 2 (Extended Key Result). Suppose that the initial distribution
of signals contains at least one positive and at least one negative signal.

1. If λ1(M+) < λ1(M−), then for all i and large t

xi(t) ≈
c+
i

c−i

(
1 + λ1(M+)
1 + λ1(M−)

)t ∑n
k=1 c

−
k d
−
k∑n

k=1 c
+
k d

+
k

∑n
j=1 d

+
j sj

1−∑n
j=1 d

−
j sj

such that lim
t→∞

xi(t) = 0.

2. If λ1(M+) > λ1(M−), then for all i and large t:

xi(t) ≈ 1− c−i
c+
i

(
1 + λ1(M−)
1 + λ1(M+)

)t ∑n
k=1 c

+
k d

+
k∑n

k=1 c
−
k d
−
k

1−∑n
j=1 d

−
j sj∑n

j=1 d
+
j sj

such that lim
t→∞

xi(t) = 1.

3. If λ1(M+) = λ1(M−), then for all i:

lim
t→∞

xi(t) = 1

1 + c−i
c+
i

∑n
k=1 c

+
k d

+
k∑n

k=1 c
−
k d
−
k

1−∑n
j=1 d

−
j sj∑n

j=1 d
+
j sj

∈ (0, 1).
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Extended Proposition 2 first of all shows that the key result obtained in our baseline
model (Proposition 2) is robust to the broad generalization. Second, the crucial condition
is now expressed in terms of the largest eigenvalues λ1(M+) and λ1(M−), which combine
the network structures given in the matrices A+ and A− with the decay factors δ+

ij and
δ−ij . For the analogon of Equation 4, we find:

xi(t) ≈
c+
i

c−i︸︷︷︸
centrality ratio

·
(

1 + λ1(M+)
1 + λ1(M−)

)t
︸ ︷︷ ︸
exponential decay

·
∑n
k=1 c

−
k d
−
k∑n

k=1 c
+
k d

+
k︸ ︷︷ ︸

“concentration ratio”

·
∑n
j=1 d

+
j sj

1−∑n
j=1 d

−
j sj︸ ︷︷ ︸

signal averages

(B.1)

Thus, the centrality ratio is determined by the right eigenvectors c+ and c−, while the left
eigenvectors d+ and d− capture the influence of initial signals. The concentration ratio,
which considered the squared centralities in the baseline model, now uses the product of
left and right eigenvector entries.

Extended Corollary 1 (Probability of Misinformation). 1. If λ1(M+) < λ1(M−),
then each agent i’s probability of long-run misinformation is

pMis
i (∞) = (1− b+)(1− ρ)n + b+(1− ρn),

which is essentially b+ for large networks.

2. If λ1(M+) > λ1(M−), then each agent i’s probability of long-run misinformation is

pMis
i (∞) = (1− b+)(1− ρn) + b+(1− ρ)n,

which is essentially 1− b+ for large networks.

3. If λ1(M+) = λ1(M−), then an agent i’s (long-run) probability of misinformation is
bounded by

pMis
i (∞) ≤ max{(1−b+)(1−ρ)n+b+(1−ρn), (1−b+)(1−ρn)+b+(1−ρ)n} < max{b+, 1−b+}.

Thus, Corollary 1 also neatly generalizes, with λ1(M+) and λ1(M−) taking the roles
of δ+λ+

1 and δ−λ−1 , respectively. The same holds true for the next extended proposition.

Extended Proposition 3 (Asymptotic Learning). Consider a sequence of growing net-
works, indexed by network size n.

1. If some agent i’s long-run probability of misinformation shrinks to zero, i.e. if
lim
n→∞

pMis
i,n (∞) = 0, then the largest eigenvalues of the two networks coincide from

a certain point in time on, i.e. there is a natural number n∗ such that λ1(M+
n ) =

λ1(M−
n ) for all n > n∗.

3



2. For a fixed agent i, the probability of long-run misinformation converges to zero, i.e.
lim
n→∞

pMis
i,n (∞) = 0, if the following three conditions are satisfied:

(i) The largest eigenvalues of the two networks coincide from a certain point in
time on, i.e. there is a natural number n∗ such that λ1(M+

n ) = λ1(M−
n ) for all

n > n∗.
(ii) Maximal left-hand eigenvector centrality converges to zero, i.e. we have both

lim
n→∞

max
j=1,...,n

d+
j,n = 0 and lim

n→∞
max
j=1,...,n

d−j,n = 0.

(iii) The agent’s centrality ratio over the two networks’ concentration ratio has all
accumulation points within the open interval

(
1−ρ
ρ
, ρ

1−ρ

)
, i.e. there is a positive

real number ε > 0 and an integer n∗∗ such that for all n ≥ n∗∗,

γi,n :=

c+
i,n

c−i,n∑n

j=1 c
+
j,nd

+
j,n∑n

j=1 c
−
j,nd

−
j,n

∈
[

1− ρ
ρ

+ ε,
ρ

1− ρ − ε
]
. (B.2)

For completeness’ sake, we also present the generalizations of Corollaries 2 and 3,
which hold almost unchanged.

Extended Corollary 2 (Centrality Ratios and Opinion Diversity). Suppose that the
initial distribution of signals contains at least one positive and at least one negative signal.
Then, the ratio of two agents’ ratios of positive over negative signals converges to these
agents’ ratio of centrality ratios, i.e.

lim
t→∞

N+
i (t)

N−i (t)

/N+
j (t)

N−j (t) = c+
i

c−i

/c+
j

c−j
. (B.3)

Hence, an agent i with higher centrality ratio than another agent j has a higher asymptotic
signal mix, i.e. if c+

i

c−i
>

c+
j

c−j
, then for large t, xi(t) > xj(t).

Extended Corollary 3 (Speed of Convergence). Suppose that λ1(M+) 6= λ1(M−) Then
half-life is

t1/2 = log(0.5)
log(τ) , with τ := 1 + min{λ1(M+), λ1(M−)}

1 + max{λ1(M+), λ1(M−)} (B.4)

B.2 Proofs for Results of Extended Model
B.2.1 Proof of Extended Proposition 1

According to Case 3 of Extended Proposition 2, which will be proven below, and due to
symmetry, we have:

lim
t→∞

xi(t) = 1

1 + 1−
∑n

j=1 djsj∑n

j=1 djsj

=
n∑
j=1

djsj.
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If the true state equals 1, θ = 1, then, depending on ρ, the probability of long-run
misinformation is given by

p1(ρ) := P

 n∑
j=1

djsj <
1
2

+ 1
2P

 n∑
j=1

djsj = 1
2

 ,
and all sj will be iid B(1, ρ)-distributed. In case of θ = 0, however, the probability of
long-run misinformation is given by

p0(1− ρ) := P

 n∑
j=1

djsj >
1
2

+ 1
2P

 n∑
j=1

djsj = 1
2

 ,
with all sj being iid B(1, 1− ρ)-distributed.

For ρ = 0.5, sj and 1− sj have the same distribution, which together with ∑n
j=1 dj =

1 and p1(0.5) + p0(0.5) = 1 implies p1(0.5) = p0(0.5) = 0.5. As p1 is decreasing in
its argument, while p0 is increasing in its argument, and ρ > 0.5, the probability of
misinformation is always bounded by 0.5 from above.

Finally, notice that E(xi(∞)) = E
(∑n

j=1 dj,nsj
)

= ρ when θ = 1 and E(xi(∞)) =
E
(∑n

j=1 dj,nsj
)

= 1− ρ when θ = 0. For both states, the variance of xi(∞) = ∑n
j=1 dj,nsj

is given by ρ(1− ρ)∑n
j=1 d

2
j . For this variance, we find

ρ(1− ρ)
n∑
j=1

d2
j ≤ ρ(1− ρ) max

j=1,...,n
dj,n

n∑
j=1

dj,n = ρ(1− ρ) max
j=1,...,n

dj,n
n→∞−→ 0.

Overall, thus, xi(∞) converges in probability to ρ > 0.5 when θ = 1 and to 1 − ρ < 0.5
when θ = 0, entailing that the probability of misinformation shrinks to 0 in any case.

B.2.2 Proof of Extended Proposition 2

In order to prove the assertions, we will show that

(
1 + λ1(M+)

)−t
N+(t) t→∞−→ c+ (d+)> s

n∑
k=1

c+
k d

+
k

= c+

n∑
j=1

d+
j sj

n∑
k=1

c+
k d

+
k

, (B.5)

(
1 + λ1(M−)

)−t
N−(t) t→∞−→ c−

(d−)> (1− s)
n∑
k=1

c−k d
−
k

= c−
1−

n∑
j=1

d−j sj

n∑
k=1

c−k d
−
k

. (B.6)

With Equations (B.5) and (B.6) at hand, the assertions of Proposition 2 then follow
from exactly the same arguments as those given in the proof of Proposition 2 after Equa-
tions (A.4) and (A.5).
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As the essential parts of Equations (B.5) and (B.6) coincide, determining the limits of
(1 + λ1(M+))−tN+(t) is completely analogous to determining the limit of (1 + λ1(M−))−tN−(t).
Thus, we will do this in one sweep by looking at the limit of (1 + λ1(M))−t (I+M)t, where
M and stands forM+ andM−, respectively. The proof will thus be complete when show-
ing that

(1 + λ1(M))−t (I +M)t t→∞−→ c d>

c>d
, (B.7)

where c (d) stands for c+ and c− (d+ and d−), respectively.3 In order to prove Equa-
tion (B.7), we first rewrite M using its Jordan normal form: M = SJS−1, where J is a
block diagonal matrix

J =


J1

. . .
Jp


formed of Jordan blocks Ji (i = 1, . . . , p), which are either scalars consisting of eigenvalues
λi of M or have the form

Ji =


λi 1

λi
. . .
. . . 1

λi

 .

Due to the network being strongly connected andM containing only non-negative entries,
M is irreducible and Perron-Frobenius theory allows to infer that the spectral radius of
M is a simple eigenvalue of M . We will assume without loss of generality that this value,
λ1(M), corresponds to the matrix J1. As λ1(M) is the spectral radius ofM , we also know
that |λi| ≤ λ1(M) for all i > 1. From all this, by setting λ̃i := 1+λi

1+λ1(M) we find that
M̃ := 1

1+λ1(M)(I +M) = SJ̃S−1, with

J̃ =


1

J̃2
. . .

J̃p

 , J̃i =


λ̃i 1

λ̃i
. . .
. . . 1

λ̃i

 (i = 2, . . . , p).

Additionally, we know that λ̃i < 1 due to |λi| ≤ λ1(M) and λi being different from λ1(M).
3Additionally, Equation (B.7) implies that for Cases 1 and 2, the formulas given in the main text for

speed of convergence remain valid in the generalized setting of Proposition 2.
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Taking all this together, we find that

(1 + λ1(M))−t (I +M)t = M̃ t = SJ̃ tS−1 = S


1

J̃ t2
. . .

J̃ tp

S−1.

With respect to the terms J̃ ti , it is well known (and easy to prove) that for large t

J̃ ti =


λ̃ti

(
t
1

)
λ̃t−1
i

(
t
2

)
λ̃t−2
i . . .

λ̃ti
. . . ...
. . .

(
t
1

)
λ̃t−1
i

λ̃ti

 ,

implying that all J̃ ti shrink to 0 due to |λ̃i| < 1, entailing that the rate of convergence
of M̃ t is essentially being determined by max{λ̃i : i = 2, . . . , p}.4 For the limit of M̃ t,
we thus have: M̃ t t→∞−→ Se1e

>
1 S
−1. Setting u := Se1 and v := S−>e1, we can rewrite this

as M̃ t t→∞−→ u v>. The following derivations show that u is a right eigenvector of M for
λ1(M), while v is a corresponding left eigenvector:

Mu = MSe1 = SJS−1Se1 = SJe1 = Sλ1(M)e1 = λ1(M)u,

v>M =
(
S−>e1

)>
M = e>1 S

−1M = e>1 S
−1SJS−1 = e>1 JS

−1 = λ1(M)e>1 S−1

= λ1(M)
(
S−>e1

)>
= λ1(M)v>.

As the left and right eigenvectors of M for λ1(M) are unique up to multiplying by a
constant, uv> and cd> differ only by a constant: uv> = αcd> for some constant α. Now,
from uv>uv> = Se1e

>
1 S
−1Se1e

>
1 S
−1 = Se1e

>
1 e1e

>
1 S
−1 = Se1e

>
1 S
−1 = uv>, we find that

uv>uv> = αcd>αcd> must equal uv> = αcd>, thus we have α2d>c = α, implying α = 1
d>c

and M̃ t t→∞−→ cd>

c>d
, proving Equation (B.7) and concluding the proof.

B.2.3 Proof of Extended Corollary 1

The proofs are analogous to the ones of Corollary 1, building on Extended Proposition 2
instead of Proposition 2.

B.2.4 Proof of Extended Proposition 3

The proof is completely analogous to that of Proposition 3, building on Extended Propo-
sition 2 instead of Proposition 2 and substituting centralities c+

j,n and c−j,n by d+
j,n and d−j,n

where appropriate.
4This implies that the formulas for Case 3 discussed in C.3 still apply to the generalized setting.
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B.2.5 Proof of Extended Corollary 2

The proof of this corollary is perfectly analogous to the one of Corollary 2, building on
Extended Proposition 2 instead of Proposition 2.

B.2.6 Proof of Extended Corollary 3

The proof is completely analogous to the one of Corollary 3, building on Extended Propo-
sition 2 instead of Proposition 2, see also footnote 3.
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C Further Appendices

C.1 Additional Examples for the Benchmark Case of Symmetry

To illustrate occurrence of misinformation in the setting of symmetry, as discussed in
Section 4, we study two extreme examples: A regular graph in Example C.1 and a network
with a clique of five in Example C.2. oth examples are also used in Figure 1 in the main
text as “best” and “worst‘” networks.

Example C.1 (Regular network). Consider network (N,A) that is connected and regular
of degree k, i.e. every agent has exactly k links.

Regularity of degree k implies that the largest eigenvalue is λ1 = k and eigenvector
centrality is c = ( 1

n
, ..., 1

n
). From Proposition 1, lim

t→∞
xi(t) = 1

n

∑n
j=1 sj, which is just the

mean of the initial signals. This is a remarkable observation: Under symmetry and when
the network is regular, the long-run signal mix of every agent exactly reflects the initial
signal distribution.

The only source of misinformation is hence that the initial draw of signals is “unlucky”
(i.e. it happens to consist of many signals that do not reflect the true state). For instance,
let n be odd. Then the probability of misinformation is pMis

i (∞)∑n−1
2

r=0

(
n
r

)
ρr(1 − ρ)n−r,

which equals the probability that the minority of n independent signals is correct. To
have concrete numerical examples, let the quality of each initial signal be ρ = 0.6. Then
pMis
i (∞) = 0.267 for n = 9 agents and pMis

i (∞) = 0.022 for n = 99 agents. Observe that
the probability of misinformation in regular graphs goes to zero for growing n.

Observe finally the comparison to Bayesian learners. Suppose for a moment that all
agents are proper Bayesian learners in the following sense: they account for the repetition
of signals and form their beliefs according to Bayes’ rule using each independent signal
only once. In a connected network, these Bayesian learners will update until they have
received each initial signal and then form their belief based on exactly the same signal mix
as our much more naïve agents form in the long run when the network is regular (see,
e.g. DeMarzo et al. (2003), Theorem 3).

Example C.2 (Network with clique of five). Consider the network (N,A) depicted in
Figure C.1. This network consists of n = 10 agents. Five of them, 1, ..., 5, form a clique,
i.e. the network restricted to these agents is complete; the others are arranged in a line.

The normalized eigenvector corresponding to the largest eigenvalue is

c = (19.42%, 18.41%, 18.41%, 18.41%, 18.41%, 5.12%, 1.35%, 0.36%, 0.09%, 0.02%)

The nodes are labeled according to their entry in this eigenvector with 1 having the largest
entry and 10 the lowest. Observe that the five members of the clique obtain the highest
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6 7 8 9 10

Figure C.1: A network with a clique of five and all other agents arranged in a line.
Eigenvector centrality is:

c = (19.42%, 18.41%, 18.41%, 18.41%, 18.41%, 5.12%, 1.35%, 0.36%, 0.09%, 0.02%)

eigenvector entries. In fact, any three of their entries sum up to more than half of all
entries. Hence, if it happens that at least three out of the five agents 1, ..., 5 receive
the wrong signal, say 0, we have ∑n

j=1 cjsj < 0.5 for θ = 1 and hence misinformation
prevails (by Proposition 1).5 The probability to have such a draw of signals and in fact
the probability of misinformation is (1−ρ)5 +5ρ(1−ρ)4 +10ρ2(1−ρ)3, e.g. for ρ = 0.6, it
is pMis(xi(∞)) = 0.31744. There are many more such networks (with the same expected
level of misinformation) for n = 10, but there is no network with higher probability of
misinformation.

More importantly, we can construct networks with a clique of five and all others ar-
ranged in a line for all n > 7. The probability of misinformation is unchanged, as we
checked for n up to 1’000 by using programming language R. The eigenvector centralities
converge to c1 = 19.41919% and c2,...,5 = 18.40593% for the members of the clique. Hence,
misinformation still happens when at least three out of these five receive the wrong signal.
Thus, we observe that as the number of nodes grow, the probability of misinformation need
not go to zero, as there are networks with a substantial probability of misinformation.

The example shows that a small group of people who are well-connected among them-
selves may have a disproportional large influence on the long-run signal mixes and hence

5And likewise for θ = 0, as under symmetry, the realized state does affect the probability of misinfor-
mation.
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can be a cause for misinformation under symmetry. However, under symmetry the prob-
ability of misinformation is always bounded and it converges to zero for large networks
under a standard condition, as shown by Proposition 1 in the main text.

C.2 Different Interpretations for the Decay Factor
With respect to the decay factors, there are in fact three different interpretations, as we
will explain in more detail below. In a nutshell, these interpretations are (i) the sender
only shares part of her signals, (ii) the communication channel does not transmit 100%
of the signals, and (iii) the recipient discounts part of the received signals. In order to
improve readability, we will in this subsecion omit all ‘+’ and ‘-’ superscripts, thus A may
stand for A+ and A−, respectively, N(t) may denote either the numbers of positive signals
N+(t) or that of negative signals N−(t), δ will be either δ+ or δ− and so on.

In order to showcase all the explanations given above for the existence of decay factors,
we might consider the following very general model: by N(s)(t), we denote the numbers of
signals that agents send out to their neighbours, and we write N(s)(t) = δ(s)N(t) to model
that agents do not communicate all their signals to their neighbors, with δ(s) ∈ (0, 1]
capturing the share of signals that agents are willing to transmit. We then denote by
N(t)(t) the numbers of signals that are transmitted between the agents, and by modeling
N(t)(t) = δ(t)AN(s)(t), with δ(t) ∈ (0, 1] describing the share of signals that are successfully
transmitted by the communication channel. Finally, we use N(p)(t) to denote the numbers
of signals that agents are actually processing when updating their signals from time t to
t + 1. Here, by setting N(p)(t) = δ(p)N(t)(t), the discounting of received signals by agents
would be described by δ(p) ∈ (0, 1]. Taken together and defining δ := δ(p)δ(t)δ(s), agents
process

N(p)(t) = δ(p)N(t)(t) = δ(p)δ(t)AN(s)(t) = δ(p)δ(t)Aδ(s)N(t) = δ(p)δ(t)δ(s)AN(t) = δAN(t),
(C.1)

which is exactly the formula that we use in our main model. By doing so, we are able
to model any of the three interpretations, by setting two of the three factors to 1 and
allowing only one to be smaller than 1: e.g. setting δ(p) = 1, δ(t) = 1, and δ(s) < 1 leads to
a model where the decay factor δ captures that agents share only some part of the signals
they receive. Furthermore, our model also allows variations where two or even all three
effects are at play.

If some of the above phenomena are no longer homogeneous across agents, but agent-
specific, we might preserve the general structure, but replace the scalar quantities δ(p), δ(t),
and δ(s) by matrices ∆(p), ∆(t), and ∆(s). In this case, the equation describing sharing only
parts of available signals becomes N(s)(t) := ∆(s)N(t), and ∆(s) will be a diagonal matrix
which captures the agent-specific factors describing which share of their signals agents do
actually share. Similarly, the generalized equation for the discounting of received signals
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becomes N(p)(t) = ∆(p)N(t)(t), with the diagonal matrix ∆(p) capturing the agent-specific
factors used for ignoring some part of the signals transmitted to the agents. Finally, with
the non-diagonal matrix ∆(t) whose entries ∆(t)ij determine the share of signals that are
successfully transmitted from agent j to agent i, the equation for the transmitted signals
becomes N(t)(t) := (∆(t) ◦A)N(s)(t), with ∆(t) ◦A denoting the Hadamard product of ∆(t)

and A. Equation (C.1) then generalizes to

N(p)(t) = ∆(p)N(t)(t) = ∆(p)
(
∆(t) ◦ A

)
N(s)(t) = ∆(p)

(
∆(t) ◦ A

)
∆(s)N(t) (C.2)

Due to properties of diagonal matrices and the Hadamard product, ∆(p)
(
∆(t) ◦ A

)
∆(s)

turns out to be identical to
(
∆(p)∆(t)∆(s)

)
◦ A, implying that we finally have N(p)(t) =

(∆ ◦ A)N(t), with ∆ := ∆(p)∆(t)∆(s), which amounts to the formula we use in our ex-
tended model. The components ∆ij thus simultaneously capture agent i’s possible dis-
counting (∆(p)i), the communication between i and j not working properly (∆(t)ij), and
agent j not sharing all signals (∆(s)j). Similar to above, our generalized model therefore
also allows for one, two, or even all three of these effects being at play.

C.3 Conditions for Case 3 to Approximate Case 1 and 2
Proposition 2 provides a case distinction with three cases. In the main text, we argue that
Case 3 is sometimes a good approximation for the short-run and medium-run dynamics
of Cases 1 or 2. Here we elaborate on the conditions for this approximation to work.

The first condition is that parameters are reasonably close to Case 3, i.e. δ+λ+
1 being

close to δ−λ−1 . We can observe this in Example 1 in Figure 2, where values of δ+ which
are close to the critical value of 0.4 induce similar dynamics. There is however a second
condition, which happens to be satisfied in Example 1. For explaining that condition, let
us reconsider equations (A.2) and (A.3) and define τCase 3 := max{ |1+δ+λ+

i |
1+δ+λ+

1
,
|1+δ−λ−i |
1+δ−λ−1

, i =
2, . . . , n}, where λ+

i and λ−i denote all but the largest eigenvalues of A+ and A−, respec-
tively. The second condition is that τCase 3 is substantially smaller than 1+min{δ+λ+

1 ,δ
−λ−1 }

1+max{δ+λ+
1 ,δ
−λ−1 }

.
Intuitively, the first condition assures that the importance of the largest eigenvalues per-
sists sufficiently long (they always matter in Case 3, but vanish in the long run of the
two others) and the second condition assures that the importance of all other eigenvalues
vanishes sufficiently fast. As a rule of thumb, when slow convergence occurs in Cases 1
or 2, resulting in large values for actual half-life t1/2 = log(0.5)

/
log

(
1+min{δ+λ+

1 ,δ
−λ−1 }

1+max{δ+λ+
1 ,δ
−λ−1 }

)
,

and at the same time the half-life formula for Case 3, log(0.5)
log(τCase 3) produces a much lower

“pseudo half-life,” then the formula given for Case 3 of Proposition 2 may provide a bet-
ter approximation for the relevant misinformation in the short or medium term than the
actual long-term limit of either 0 or 1.
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C.4 Comparison with DeGroot Model
In the following, we will discuss the similarities and differences of our model as compared
to the classical DeGroot model, with respect to model set-up, conditions for convergence,
reaching a consensus, and eigenvector centrality.

With respect to the set-up of our model, the most striking difference to the DeGroot
model is that we separate the evolution of positive and of negative signals, while in the
DeGroot model this distinction is not possible. However, the evolution of each type of
signals (positive or negative) resembles the DeGroot model, in the sense that values at
time t+ 1 are linear functions of values at time t. While the weights of these regression-
type recursions are restricted to be non-negative in our model as well in the DeGroot
model, our model for the signals’ evolution does not require convex combinations, i.e. the
weights do not have to sum up to unity, in contrast to the DeGroot case. For the special
case of symmetry in the sense that A+ = A− =: A as well as δ+ = δ− =: δ and denoting
I + δA by W , it is easy to see that N+(t) = W ts, N−(t) = W t(1− s), and N(t) = W t

1,
implying

xi(t) = e>i W
ts

e>i W
t1
, (C.3)

with ei denoting the i-th unit vector. Furthermore, Equation (C.3) implies that the
updating of the signal mixes x(t) in our model may be written as

x(t) = W̃ (t)x(t− 1) (C.4)

with the row-stochastic matrices W̃ (t) having entries w̃(t)ij = wij
κj(t−1)
κi(t) , with wij denoting

the entries of W = I + δA and κ(t) := W t
1.6 Equation (C.4) thus is a representation

of the updating process in our model as a generalized DeGroot model, where in general
the updating matrices W̃ (t) are not constant, but change over time. Furthermore, if the
networks described by A are regular, then these updating matrices will in fact not depend
on time, and the updating formula (C.4) will actually become a DeGroot model.7

With regard to conditions ensuring convergence, it is well-known that values converge
in the DeGroot model if and only if every set of nodes is strongly connected and closure
is also aperiodic. This is in fact very similar to our model, where we receive convergence
by assuming that the whole society is strongly connected and by observing that the
matrices W+ and W− are aperiodic. Aperiodicity of the matrices W+ = I + δ+A+ and
W− = I + δ−A− is guaranteed, as they both involve the identity matrix I.

For the DeGroot model, a consensus emerges whenever the model converges, where
the consensus is a convex combination of the initial values. This is different for our model,

6A similar representation of x(t) also holds for the extended model, it can be developed by simply
replacing all appearances of δA by M .

7This observation has been analogously made in Sikder et al. (2020).
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which in contrast to the DeGroot model, allows for the signal mixes to converge to the
truth or to complete misinformation, depending on the networks’ eigenvalues and the
decay parameters. In addition, in our model, signal mixes will converge to consensus if
δ+λ+ = δ−λ− and c−i

c+
i

does not depend on i: the latter condition is equivalent to c− = c+,
i.e. in our main as well as in the extended model (Section 7), the networks must have
identical centralities. This actually can happen even though A+ and A− are different,
with an example being the case of both networks being regular, but of different degrees.

With respect to eigenvector centrality in DeGroot models, the left-hand eigenvector
determines the weights for the asymptotically emerging consensus (Jackson, 2010; Golub
and Sadler, 2016). In our model, however, centralities only play this role when the relation
δ+λ+

1 = δ−λ−1 holds (i.e. in case 3). In this case, eigenvector centralities play two roles (in
our main model): they influence the long-run signal mix of all agents commonly through
1−
∑n

j=1 c
−
j sj∑n

j=1 c
+
j sj

, reflecting the initial signals’ impact, and they influence the agents’ individual

long-run signal mixes through the centrality ratios c−i
c+

i

. In our extended model, the former
role (the part common to all agents) is played by the left-hand eigenvectors d+ and d−,
while the latter role (the individual part) is still played by the (right-hand) eigenvector
centralities c+ and c−.
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